Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.282
Filter
1.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564840

ABSTRACT

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Subject(s)
Radiation Dosimeters , Thermoluminescent Dosimetry , Thermoluminescent Dosimetry/methods , Radioisotopes , Radiometry/methods , Calibration
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-38605613

ABSTRACT

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Algorithms , Calibration , Electronics , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods
3.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38652667

ABSTRACT

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning proton therapy presents a promising and practical approach. The study developed Artificial Neural Network (ANN) models to predict proton beam spot size and relative positional errors using 9000 proton spot data. The irradiation log files as input variables and corresponding scintillation detector measurements as the label values. The ANN models were developed to predict six variables: spot size in thex-axis,y-axis, major axis, minor axis, and relative positional errors in thex-axis andy-axis. All ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers, and one output layer. Model performance was validated using various statistical tools. The log file recorded spot size and relative positional errors, which were compared with scintillator-measured data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and 0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and 0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot size and positional errors enhances efficiency in routine dosimetric checks.


Subject(s)
Neural Networks, Computer , Proton Therapy , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Proton Therapy/methods , Radiometry/methods , Humans , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Machine Learning , Reproducibility of Results , Protons
4.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38579691

ABSTRACT

Background.Modern radiation therapy technologies aim to enhance radiation dose precision to the tumor and utilize hypofractionated treatment regimens. Verifying the dose distributions associated with these advanced radiation therapy treatments remains an active research area due to the complexity of delivery systems and the lack of suitable three-dimensional dosimetry tools. Gel dosimeters are a potential tool for measuring these complex dose distributions. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required.Purpose.To compare a subset of the top performing algorithms in terms of image quality and quantitatively determine the optimal algorithm while accounting for refraction within the optical CT system. The following algorithms were compared: Landweber, superiorized Landweber with the fast gradient projection perturbation routine (S-LAND-FGP), the fast iterative shrinkage/thresholding algorithm with total variation penalty term (FISTA-TV), a monotone version of FISTA-TV (MFISTA-TV), superiorized conjugate gradient with the nonascending perturbation routine (S-CG-NA), superiorized conjugate gradient with the fast gradient projection perturbation routine (S-CG-FGP), superiorized conjugate gradient with with two iterations of CG performed on the current iterate and the nonascending perturbation routine (S-CG-2-NA).Methods.A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal non-uniformity (SNU), mean relative difference (MRD) and reconstruction time. We developed an image quality based method to find the optimal stopping iteration window for each algorithm. Imaging data from the prototype optical CT scanner was reconstructed and analysed to determine the optimal algorithm for this application.Results.The optimal algorithms found through the quantitative scoring metric were FISTA-TV and S-CG-2-NA. MFISTA-TV was found to behave almost identically to FISTA-TV however MFISTA-TV was unable to resolve some of the synthetic phantoms. S-CG-NA showed extreme fluctuations in the SNR and CNR values. S-CG-FGP had large fluctuations in the SNR and CNR values and the algorithm has less noise reduction than FISTA-TV and worse spatial resolution than S-CG-2-NA. S-LAND-FGP had many of the same characteristics as FISTA-TV; high noise reduction and stability from over iterating. However, S-LAND-FGP has worse SNR, CNR and SNU values as well as longer reconstruction time. S-CG-2-NA has superior spatial resolution to all algorithms while still maintaining good noise reduction and is uniquely stable from over iterating.Conclusions.Both optimal algorithms (FISTA-TV and S-CG-2-NA) are stable from over iterating and have excellent edge detection with ESF MTF 50% values of 1.266 mm-1and 0.992 mm-1. FISTA-TV had the greatest noise reduction with SNR, CNR and SNU values of 424, 434 and 0.91 × 10-4, respectively. However, low spatial resolution makes FISTA-TV only viable for large field dosimetry. S-CG-2-NA has better spatial resolution than FISTA-TV with PSF and LSF MTF 50% values of 1.581 mm-1and 0.738 mm-1, but less noise reduction. S-CG-2-NA still maintains good SNR, CNR, and SNU values of 168, 158 and 1.13 × 10-4, respectively. Thus, S-CG-2-NA is a well rounded reconstruction algorithm that would be the preferable choice for small field dosimetry.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Radiometry/methods , Signal-To-Noise Ratio , Algorithms
5.
Radiat Oncol ; 19(1): 40, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509543

ABSTRACT

PURPOSE: To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS: Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS: The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS: The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.


Subject(s)
Particle Accelerators , Radiometry , Humans , Radiometry/methods , Monte Carlo Method , Phantoms, Imaging , Calibration
6.
Sci Rep ; 14(1): 7134, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38532018

ABSTRACT

We aimed to investigate the deliverability of dynamic conformal arc therapy (DCAT) by gantry wobble owing to the intrinsic inter-segment break of the Elekta linear accelerator (LINAC) and its adverse influence on the dose to the patient. The deliverability of DCAT was evaluated according to the plan parameters, which affect the gantry rotation speed and resultant positional inaccuracies; the deliverability according to the number of control points and dose rates was investigated by using treatment machine log files and dosimetry devices, respectively. A non-negligible degradation in DCAT deliverability due to gantry wobble was observed in both the treatment machine log files and dosimetry devices. The resulting dose-delivery error occurred below a certain number of control points or above a certain dose rate. Dose simulations in the patient domain showed a similar impact on deteriorated deliverability. For targets located primarily in the isocenter, the dose differences were negligible, whereas for organs at risk located mainly off-isocenter, the dose differences were significant up to - 8.77%. To ensure safe and accurate radiotherapy, optimal plan parameters should be selected, and gantry angle-specific validations should be conducted before treatment.


Subject(s)
Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods
7.
Phys Med Biol ; 69(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38537287

ABSTRACT

Objective.Online magnetic resonance imaging (MRI) guidance could be especially beneficial for pencil beam scanned (PBS) proton therapy of tumours affected by respiratory motion. For the first time to our knowledge, we investigate the dosimetric impact of respiratory motion on MRI-guided proton therapy compared to the scenario without magnetic field.Approach.A previously developed analytical proton dose calculation algorithm accounting for perpendicular magnetic fields was extended to enable 4D dose calculations. For two geometrical phantoms and three liver and two lung patient cases, static treatment plans were optimised with and without magnetic field (0, 0.5 and 1.5 T). Furthermore, plans were optimised using gantry angle corrections (0.5 T +5° and 1.5 T +15°) to reproduce similar beam trajectories compared to the 0 T reference plans. The effect of motion was then considered using 4D dose calculations without any motion mitigation and simulating 8-times volumetric rescanning, with motion for the patient cases provided by 4DCT(MRI) data sets. Each 4D dose calculation was performed for different starting phases and the CTV dose coverageV95%and homogeneityD5%-D95%were analysed.Main results.For the geometrical phantoms with rigid motion perpendicular to the beam and parallel to the magnetic field, a comparable dosimetric effect was observed independent of the magnetic field. Also for the five 4DCT(MRI) cases, the influence of motion was comparable for all magnetic field strengths with and without gantry angle correction. On average, the motion-induced decrease in CTVV95%from the static plan was 17.0% and 18.9% for 1.5 T and 0.5 T, respectively, and 19.9% without magnetic field.Significance.For the first time, this study investigates the combined impact of magnetic fields and respiratory motion on MR-guided proton therapy. The comparable dosimetric effects irrespective of magnetic field strength indicate that the effects of motion for future MR-guided proton therapy may not be worse than for conventional PBS proton therapy.


Subject(s)
Lung Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Motion , Radiometry/methods , Protons , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Four-Dimensional Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy
8.
Phys Med Biol ; 69(9)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38518380

ABSTRACT

Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.


Subject(s)
Radiobiology , Radiometry , X-Rays , Reproducibility of Results , Radiometry/methods , Phantoms, Imaging , Monte Carlo Method
9.
Phys Med Biol ; 69(9)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38530300

ABSTRACT

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Subject(s)
Carbon Compounds, Inorganic , Radiation Dosimeters , Radiometry , Radiometry/methods , Silicon Compounds , Electrons
10.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38452383

ABSTRACT

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Subject(s)
Proton Therapy , Protons , Radiometry/methods , Proton Therapy/methods , Magnetic Fields , Monte Carlo Method
11.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38478998

ABSTRACT

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Subject(s)
Electrons , Radiotherapy, High-Energy , Radiotherapy Dosage , Fiber Optic Technology , Radiometry/methods
12.
Sci Rep ; 14(1): 6119, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480827

ABSTRACT

Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.


Subject(s)
Radiation Exposure , Radiometry , Humans , Mice , Animals , Spectroscopy, Fourier Transform Infrared , Fourier Analysis , Radiometry/methods , Proteins , Radiation, Ionizing , Radiation Exposure/analysis , Radiation Dosage
13.
J Appl Clin Med Phys ; 25(4): e14213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425126

ABSTRACT

PURPOSE: To develop a Total Body Irradiation (TBI) technique using IMRT at extended SSD that can be performed in any size Linac room. METHODS: Patients studied were placed on a platform close to the floor, directly under the gantry with cranial-caudal axis parallel to the gantry rotation plane and at SSD ∼200 cm. Two abutting fields with the same external isocenter at gantry angles of ±21˚, collimator angle of 90˚, and field size of 25 × 40 cm2 are employed for both supine and prone positions. An iterative optimization algorithm was developed to generate a uniform dose at the patient mid-plane with adequate shielding to critical organs such as lungs and kidneys. The technique was validated in both phantom and patient CT images for treatment planning, and dose measurement and QA were performed in phantom. RESULTS: A uniform dose distribution in the mid-plane within ±5% of the prescription dose was reached after a few iterations. This was confirmed with ion-chamber measurements in phantom. The mean dose to lungs and kidneys can be adjusted according to clinical requirements and can be as low as ∼25% of the prescription dose. For a typical prescription dose of 200 cGy/fraction, the total MU was ∼2400/1200 for the superior/inferior field. The overall treatment time for both supine/prone positions was ∼54 min to meet the maximum absorbed dose rate criteria of 15 cGy/min. IMRT QA with portal dosimetry shows excellent agreement. CONCLUSIONS: We have developed a promising TBI technique using abutting IMRT fields at extended SSD. The patient is in a comfortable recumbent position with good reproducibility and less motion during treatment. An additional benefit of this technique is that full 3D dose distribution is available from the TPS with a DVH summary for organs of interest. The technique allows precise sparing of lungs and kidneys and can be executed in any linac room.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Whole-Body Irradiation , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Radiometry/methods , Radiotherapy Dosage
14.
Biomed Phys Eng Express ; 10(3)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507785

ABSTRACT

The aim of this study was to use computer simulation to analyze the impact of the aluminum fixing support on the Reference Air Kerma (RAK), a physical quantity obtained in a calibration system that was experimentally developed in the Laboratory of Radiological Sciences of the University of the State of Rio de Janeiro (LCR-UERJ). Correction factors due to scattered radiation and the geometry of the192Ir sources were also sought to be determined. The computational simulation was validated by comparing some parameters of the experimental results with the computational results. These parameters were: verification of the inverse square law of distance, determination of (RAKR), analysis of the source spectrum with and without encapsulation, and the sensitivity curve of the Sourcecheck 4PI ionization chamber response, as a function of the distance from the source along the axial axis, using the microSelectron-v2 (mSv2) and GammaMedplus (GMp) sources. Kerma was determined by activity in the Reference air, with calculated values of 1.725 × 10-3U. Bq-1and 1.710 × 10-3U. Bq-1for the ionization chamber NE 2571 and TN 30001, respectively. The expanded uncertainty for these values was 0.932% and 0.919%, respectively, for a coverage factor (k = 2). The correction factor due to the influence of the aluminum fixing support for measurements at 1 cm and 10 cm from the source was 0.978 and 0.969, respectively. The geometric correction factor of the sources was ksg= 1.005 with an expanded uncertainty of 0.7% for a coverage factor (k = 2). This value has a difference of approximately 0.2% compared to the experimental values.


Subject(s)
Computer Simulation , Iridium Radioisotopes , Radiometry , Calibration , Radiometry/methods , Iridium Radioisotopes/therapeutic use , Humans , Air , Aluminum , Monte Carlo Method , Radiation Dosage , Brachytherapy/methods , Brachytherapy/standards , Radiotherapy Dosage , Scattering, Radiation
15.
Phys Med Biol ; 69(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38537305

ABSTRACT

Objective. Personalized dose monitoring and risk management are of increasing significance with the growing number of computer tomography (CT) examinations. These require high-quality Monte Carlo (MC) simulations that are of the utmost importance for the new developments in personalized CT dosimetry. This work aims to extend the MC framework EGSnrc source code with a new particle source. This, in turn, allows CT-scanner-specific dose and image calculations for any CT scanner. The novel method can be used with all modern EGSnrc user codes, particularly for the simulation of the effective dose based on DICOM images and the calculation of CT images.Approach. The new particle source can be used with input data derived by the user. The input data can be generated by the user based on a previously developed method for the experimental characterization of any CT scanner (doi.org/10.1016/j.ejmp.2015.09.006). Furthermore, the new particle source was benchmarked by air kerma measurements in an ionization chamber at a clinical CT scanner. For this, the simulated angular distribution and attenuation characteristics were compared to measurements to verify the source output free in air. In a second validation step, simulations of air kerma in a homogenous cylindrical and an anthropomorphic thorax phantom were performed and validated against experimentally determined results. A detailed uncertainty evaluation of the simulated air kerma values was developed.Main results. We successfully implemented a new particle source class for the simulation of realistic CT scans. This method can be adapted to any CT scanner. For the attenuation characteristics, there was a maximal deviation of 6.86% between the measurement and the simulation. The mean deviation for all tube voltages was 2.36% (σ= 1.6%). For the phantom measurements and simulations, all the values agreed within 5.0%. The uncertainty evaluation resulted in an uncertainty of 5.5% (k=1).


Subject(s)
Monte Carlo Method , Tomography, X-Ray Computed , Uncertainty , Tomography, X-Ray Computed/instrumentation , Humans , Radiometry/instrumentation , Radiometry/methods , Phantoms, Imaging , Radiation Dosage
16.
Appl Radiat Isot ; 207: 111235, 2024 May.
Article in English | MEDLINE | ID: mdl-38430824

ABSTRACT

The use of radiopharmaceuticals has gained a special place in the diagnosis and treatment of cancers and evaluation of the function of different organs of the body. In this study, the absorbed dose distribution of organs after injection of 188Re-Mu-9 has been investigated using MIRD method and MCNP-4C simulation code. The 188Re-Mu-9 labeled was injected the mouse body and the amount of 188Re-labeled accumulation was evaluated after 1, 4 and 2 4 h. Having a map of the distribution of radiopharmaceutical activity in the animal body, it is possible to convert it into a human model to obtain the internal dose received by 188Re-Mu-9 injection using the MIRD calculation method and the MCNP simulation code. According to the results of the study, the animal/human model can be acceptable method for dose estimation of antibody-based radiopharmaceuticals.


Subject(s)
Radiopharmaceuticals , Rhenium , Humans , Mice , Animals , Radiopharmaceuticals/therapeutic use , Radioisotopes , Rhenium/therapeutic use , Radiometry/methods
17.
J Cancer Res Ther ; 20(1): 389-395, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554351

ABSTRACT

INTRODUCTION: Total skin electron beam therapy, commonly known as TSET, is a good choice of treatment for patients suffering from mycosis fungoides. The aim of this study was to introduce a new approach to the beam profile measurement using diodes and to calculate the monitor units required for the TSET treatment by the use of a simple setup of output measurement. Dosimetric measurements required for the treatment were taken to establish the Stanford technique in the department, and the measured data was compared with the published data. MATERIALS AND METHODS: High-energy Linear Accelerator Clinac-DHX, Varian medical system, Palo Alto, CA, was commissioned for TSET. The output of the machine was measured by the use of a Parallel-Plate Chamber (PPC40) as per the TRS 398 recommendation. Diode dosimeters (EDD2 and EDD5) were used for beam profile measurements due to easy setup and to reduce the measurement time. RESULTS: Homogeneous dose distribution within a field size of 80 cm x160 cm was observed with the variation of -5.0% on the horizontal axis and -5.4% on the vertical axis. The calculated monitor unit to deliver 200 cGy per fraction per field at the source to surface (SSD) of 416 cm was 489 MU. CONCLUSION: The technique described for the output measurements is simple and accurate. Results of the absorbed dose and MU measured were within good agreement compared to the published literature.


Subject(s)
Particle Accelerators , Radiometry , Humans , Radiotherapy Dosage , Radiometry/methods
18.
Radiat Prot Dosimetry ; 200(6): 538-543, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38441907

ABSTRACT

The objective of this study is dosimetric comparison between the O-ring Halcyon and C-arm Clinac iX linac for volumetric modulated arc therapy (VMAT) plans for head & neck (H&N) cancer and carcinoma cervix patients. Total 60 patients of H&N cancer and carcinoma cervix were enrolled prospectively from March 2021 to March 2023. VMAT plans with 6 MV photons for Halcyon and Clinac iX were generated and compared for each patient by dose volume histogram for planning target volume coverage and organ at risk (OAR) sparing. There were no differences in between both the linacs for PTV D2% and D98%, homogeneity index, conformity index, Dmax (maximum dose) and Dmean (mean dose) of OAR. Halcyon had significantly shorter treatment time compared to Clinac iX. Halcyon delivered higher integral dose and monitor units. O-ring Halcyon produces VMAT plans comparable to other C-arm linacs for H&N and carcinoma cervix patients.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Humans , Radiotherapy, Intensity-Modulated/methods , Female , Uterine Cervical Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators/instrumentation , Head and Neck Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiometry/methods , Prospective Studies , Middle Aged , Adult
19.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474163

ABSTRACT

This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from yellowish to purple-brown and flexibility that allows it to adapt to various shapes. It was found that (i) the dose response is up to ~80 kGy, (ii) it is independent of the dose rate for 1.1-73.1 kGy/min, (iii) it can be measured in 2D using a flatbed scanner, (iv) the acquired images can be filtered using a mean filter, which improves its dose resolution, (v) the dose resolution is -0.07 to -0.4 kGy for ~0.6 to ~75.7 kGy for filtered images, and (vi) two linear dose subranges can be distinguished: ~0.6 to ~7.6 kGy and ~9.9 to ~62.0 kGy. The dosimeter combined with flatbed scanner reading and data processing using dedicated software packages constitutes a comprehensive system for measuring dose distributions for objects with complex shapes.


Subject(s)
Radiation Dosimeters , Radiation, Ionizing , Cellulose , Radiometry/methods
20.
J Vis Exp ; (204)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38465937

ABSTRACT

The in vitro cytokinesis-block micronucleus (CBMN) assay is a widely used technique in radiobiology research, biological dosimetry, genotoxicity studies, and in vitro radiosensitivity testing. This cytogenetic method is based on the detection of micronuclei in binucleated cells resulting from chromosomal fragments lagging during cell division. Fresh whole blood samples are the most preferred sample type for the CBMN assay. However, the disadvantages of working with fresh blood samples include immediate processing after blood collection and the limited number of repeated analyses that can be performed without extra blood sampling. As the need for fresh blood samples can be logistically challenging, CBMN assay on cryopreserved whole blood samples would be of great advantage, especially in large-scale patient studies. This paper describes a protocol to freeze whole blood samples and to perform the CBMN assay on these frozen blood samples. Blood samples from healthy volunteers have been frozen and thawed at different time points and then, subjected to a modified micronucleus assay protocol. The results demonstrate that this optimized procedure allows the performance of the CBMN assay on frozen blood samples. The described cryopreservation protocol may also be very useful for other cytogenetic assays and a variety of functional assays requiring proliferating lymphocytes.


Subject(s)
Cytokinesis , Radiometry , Humans , Micronucleus Tests/methods , Cell Division , Radiometry/methods , Lymphocytes , Cryopreservation
SELECTION OF CITATIONS
SEARCH DETAIL
...